HOLOCENE VARIATIONS OF RADIOCARBON RESERVOIR AGES IN A MEDITERRANEAN LAGOONAL SYSTEM

P Sabatier 1,2,4 • L Dezileau 1 • P Blanche manche 3 • G Siani 2 • M Condomines 1 • I Bentaleb 5 • G Piquès 3

ABSTRACT. To obtain a precise radiocarbon Holocene chronology in coastal areas, it is necessary to estimate the modern 14C reservoir age $R(t)$ and its possible variations with time in relation to paleoenvironmental changes. The modern reservoir 14C age was estimated by comparing AMS 14C ages of 2 recent mollusk shells found in sediment cores sampled in the Palavasian lagoonal system (south of France) with ages derived from 210Pb and 137Cs data and historical accounts of identifiable storm events. The calculated modern $R(t)$ value of 943 ± 25 14C yr is about 600 yr higher than the global mean sea surface reservoir age. This high value, probably due to the relative isolation of the lagoon from marine inputs, is in good agreement with other $R(t)$ estimates in Mediterranean lagoonal systems (Zoppi et al. 2001; Sabatier et al. 2008). 14C ages were also obtained on a series of Holoc en mollusk shells sampled at different depths of the ~8-m-long core PB06. Careful examination of the 14C ages versus depth relationships suggests that $R(t)$ in the past was lower and similar to the value presently measured in the Gulf of Lion (618 ± 30 14C yr, Siani et al. 2000). The change in $R(t)$ from 618 to 943 yr is thought to result from final closure of the coastal lagoon by the sandy barrier, due to the along-shore sediment transfer.

INTRODUCTION

To determine the Holocene timescale, absolute chronology is usually based on radiocarbon measurements of carbonaceous samples, allowing accurate paleoenvironmental and archaeological interpretations. However, when the 14C method is applied to date samples equilibrated in marine or continental bodies of water, it requires a correction, called the reservoir age correction. While the correction for marine reservoir age is well established, many recent studies have focused on climate records in coastal areas, which are strongly influenced by continental river inputs (Spennemann and Head 1998; Oldfield et al. 2003; Dezileau et al. 2005; Sabatier et al. 2008; Sorrel et al. 2009). Indeed, a sample from an estuarine or lagoonal system could be affected by a reservoir age offset (R) due to a mixture between the marine reservoir effect (MRE) and the hardwater effect (HWE) (e.g. Little 1993). The reservoir age of the global mixed marine surface layer is a quantitative measure of the offset between the activities of marine 14C variations in response to atmospheric 14C changes. It is induced by the significant lapse of time required for CO$_2$ exchange between the atmosphere and the ocean (i.e. to the long residence time of carbon in the ocean, compared to the 14C half-life) (Stuiver et al. 1986; Stuiver and Braziunas 1993). The HWE refers also to the dilution of 14C activity in the marine reservoir by the influx of 14C-free inorganic carbon originating from subaerial dissolution of old carbonate rocks (Spennemann and Head 1998).

The pre-industrial global reservoir age is estimated as 405 ± 22 14C yr and a time-dependent correction is available by using the Marine04 calibration curve (Hughen et al. 2004). Several studies have suggested the possibility of significant deviations in regional marine reservoir signature from this average value (Goodfriend and Flessa 1997; Ingram and Southon 1997; Siani et al. 2001; Reimer and McCormac 2002; Southon et al. 2002; Fontugne et al. 2004). The reservoir age in coastal areas

1Université Montpellier 2, Geosciences Montpellier, CNRS/INSU, UMR 5243, Montpellier, France.
2Corresponding author: Email: pierre.sabatier@u-psud.fr.
3Université Montpellier 3, Laboratoire d’Archéologie des Sociétés Méditerranéennes, CNRS, UMR 5140, Lattes, France.
4Université Paris-Sud, Laboratoire des Interactions et de la Dynamique des Environnements de Surface, CNRS/INSU, UMR 8148, Orsay, France.
5Université Montpellier 2, Institut des Sciences de l’Évolution de Montpellier, CNRS, UMR 5554, Montpellier, France. Also: Laboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL UMR CNRS-CEA-UVSQ, UMR 1572, Bât. 12, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
may also vary with time in relation to environmental changes, which would modify the respective proportion of marine and freshwater inputs. These changes include modification of river discharge rates and variation of marine inputs due to the build-up of a delta or due to a change in the sandy barrier morphology. Some examples of lagoonal environments in the Mediterranean area show that \(R(t) \) is high and could vary between 600 to 1200 yr (Zoppi et al. 2001; Sabatier et al. 2008). These \(R(t) \) values can be estimated by comparing dated pre-industrial marine shells of known age or by comparing the \(^{14}C \) ages of lagoonal mollusks with the ages of sediment derived using \(^{210}Pb/^{137}Cs\) methods or paleostorm events dated from historical accounts. The latter method is applied in this study.

This work is a part of the ECLICA project (Dezileau et al. 2005), one of the aims of which was to estimate the modern \(R(t) \) in a coastal lagoon of the northwestern Mediterranean basin and to understand the relation between paleoenvironmental changes and variations in \(R(t) \). When appropriate \(R(t) \) corrections are applied, a precise and high-resolution chronology of the studied sediment core can be derived. The resulting chronology provides valuable information on the relationship between climate, sediment dynamics, and the implications on human society, in an area inhabited since prehistoric times (Sabatier et al. 2010).

LOCATION OF THE SAMPLING SITE

This study focuses on the Palavasian lagoonal complex located west of the Rhône Delta, in the central part of the Gulf of Lion, 10 km south of Montpellier in southern France (Figure 1). These coastal wetlands are the result of the interaction between a process of shoreline regularization by migration of littoral barriers and the filling of these areas by fluvial and marine particulate inputs (Certain et al. 2004). This area consists of several small, shallow (<1 m) lagoons enclosed by a narrow sandy barrier to the south and to the north by calcareous Mesozoic hills. Most of the sediments supplied to the area are carried during flash-flood events by 2 short coastal rivers (Moisson and Lez). This wetland complex is now crossed by an artificial navigation channel built in the 18th century. In some places, the sandy barrier is less than 60 m wide and 3 m high above the mean sea level. This implies a temporary but strong marine influence during storm events (Dezileau et al. 2005; Sabatier et al. 2008).

The PB06 core is 7.9 m long and was collected in Pierre Blanche Lagoon (PBL), in the southern part of the Palavasian lagoonal complex (Figure 1), in March 2006 with the Uwitec coring platform (University of Chambéry and Laboratoire des Sciences du Climat et de l’Environnement). Twenty-eight lagoonal shells (\(Cerastoderma Glaucum \), \(Abra Ovata \), and \(Rissoa \) sp.) were selected on core PB06 at different depths for \(^{14}C \) age determination. In addition, another shell recovered at 62 cm depth from a nearby core (PRO 15, sampled <100 m away from PB06) was also dated.

ANALYTICAL METHODS

\(^{14}C\) analyses were conducted at the Laboratoire de Mesure \(^{14}C\) (LMC14) on the ARTEMIS accelerator mass spectrometer (Accélérateur pour la Recherche en sciences de la Terre, Environnement, Muséologie Installé à Saclay) in the CEA Institute at Saclay (Atomic Energy Commission). These \(^{14}C\) analyses were done with the standard procedures described by Tisnérat-Laborde et al. (2001). \(^{14}C\) ages were converted to calendar years using the CALIB 5.0.2 calibration program (Stuiver and Reimer 1993; Reimer and Reimer 2001). X-ray diffraction (XRD) analyses of shells were performed at the University of Montpellier 2 (Laboratoire de Mesures Physique).

Dating of sedimentary layers was carried out using \(^{210}Pb\) and \(^{137}Cs\) methods on a centennial timescale. Both nuclides together with U, Th, and \(^{226}Ra\) were determined by gamma spectrometry at the
14C Reservoir Ages in a Mediterranean Lagoonal System

Geosciences Montpellier Laboratory (Montpellier, France). The 1-cm-thick sediment layers were washed in deionized water and sieved. The fraction smaller than 1 mm was then finely crushed after drying, and transferred into small gas-tight PETP (polyethylene terephthalate) tubes (internal height and diameter of 38 and 14 mm, respectively), and stored for more than 3 weeks to ensure equilibrium between 226Ra and 222Rn. The activities of the nuclides of interest were determined using a Canberra Ge well detector and compared with the known activities of an in-house standard. Activities of 210Pb were determined by integrating the area of the 46.5-keV photo-peak. 226Ra activities were determined from the average of values derived from the 186.2-keV peak of 226Ra and the peaks of its progeny in secular equilibrium with 214Pb (295 and 352 keV) and 214Bi (609 keV). In each sample, the (210Pb unsupported) excess activities were calculated by subtracting the (226Ra supported) activity from the total (210Pb) activity. (Note that, throughout this paper, parentheses denote activities.) A self-absorption correction based on major element composition and sample density was systematically applied for all photo-peaks, using a modified version of the program written by J Fain (Pilleyre et al. 2006). The self-absorption corrections were rather small, even for the low-energy peaks (<4%).

RESULTS

Since Goldberg (1963) first established a method based on 210Pb chronology, this procedure has provided a very useful tool for dating recent sediments. Several 210Pb models were later proposed, allowing a precise calculation of sedimentation rates (e.g. Appleby and Oldfield 1978, 1992). In the...
simplest model, the initial \((^{210}\text{Pb})_{\text{ex}}\) is assumed constant and thus \((^{210}\text{Pb})_{\text{ex}}\) at any time is given by the radioactive decay law. In the CFCS (“constant flux, constant sedimentation rate”) model (Goldberg 1963; Krishnaswamy et al. 1971), the \(^{210}\text{Pb}\) flux and sedimentation rate are assumed to be constant. The sedimentation rate in Pierre Blanche Lagoon is clearly variable due to the near-instantaneous sedimentation of sandy storm deposits; however, the CFCS model can be applied when typical lagoonal conditions prevail (Sabatier et al. 2008). Using the CFCS model, the \(^{210}\text{Pb}\) data indicate a sedimentation rate of 2.65 ± 0.2 mm/yr (Figure 2, Table 1).

The most common dating method based on \(^{137}\text{Cs}\) data (Robbins and Edgington 1975) assumes that the depth of maximum \(^{137}\text{Cs}\) activity in the sediment corresponds to the maximum atmospheric production in 1963. On the other hand, the 1986 Chernobyl fallout is used to date the most recent part of cores (Appleby 1991). A property of Cs is its high mobility in marine sediments, with a preferential downward diffusive transport in porewater (Radakovitch et al. 1999). Despite the potential Cs mobility by diffusive transport, leading to the spreading of the Cs peak, we can see in Figure 2 that the \(^{137}\text{Cs}\) profile shows a clear maximum corresponding to 1963. The \(^{137}\text{Cs}\) activity depth profile thus gives accumulation rates of 2.6 and 3 mm/yr, respectively, for the 1963 and 1986 depths (Figure 2, Table 1). These rates are in good agreement with \(^{210}\text{Pb}\) data.

![Figure 2](image)

Figure 2 \(^{210}\text{Pb}_{\text{ex}}\) and \(^{137}\text{Cs}\) activity depth profiles in core PB06 from Pierre Blanche Lagoon. \(^{210}\text{Pb}\) excess disappears at around 30 cm. Using the CFCS model, the \(^{210}\text{Pb}\) data indicate a sedimentation rate of 2.65 ± 0.2 mm/yr. The \(^{137}\text{Cs}\) activity depth profile displays 2 peaks at 6 and 11 cm, resulting in accumulation rates of 2.6 and 3 mm/yr, respectively, for the 1963 and 1986 depths.
Conventional 14C measurements performed on shells from core PB06 result in model ages covering a time interval between 7600 to 1050 BP. The 14C ages are expressed in Table 2 as BP following Stuiver and Polach (1977). The XRD analysis of the shells shows a $>99\%$ aragonite composition, excluding any recrystallization process. These conventional ages display 2σ inversions between 139 and 173 cm and between 567 and 610 cm, respectively. Moreover, a large age plateau is observed between 264 and 289 cm. The dated mollusks live within the first 5 cm of sediment. Therefore, bioturbation or mollusk habitat depth cannot explain these inversions. This uncalibrated 14C chronology adopted for core PB06 allows us to estimate important reservoir age fluctuations since the modern period, and/or variations in the sedimentation rate.

Table 1 Activities of radionuclides in core PB06.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>210Pb (mBq/g)</th>
<th>226Ra (mBq/g)</th>
<th>210Pb ex (mBq/g)</th>
<th>137Cs (mBq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>113.49 ± 2.47</td>
<td>19.12 ± 0.32</td>
<td>94.38 ± 2.49</td>
<td>18.89 ± 0.53</td>
</tr>
<tr>
<td>1.5</td>
<td>102.50 ± 2.93</td>
<td>19.47 ± 0.43</td>
<td>83.03 ± 2.97</td>
<td>20.09 ± 0.68</td>
</tr>
<tr>
<td>2.5</td>
<td>101.23 ± 2.22</td>
<td>19.73 ± 0.20</td>
<td>81.50 ± 2.23</td>
<td>17.54 ± 0.45</td>
</tr>
<tr>
<td>3.5</td>
<td>104.61 ± 2.59</td>
<td>18.94 ± 0.26</td>
<td>85.67 ± 2.60</td>
<td>20.60 ± 0.56</td>
</tr>
<tr>
<td>4.5</td>
<td>99.11 ± 2.66</td>
<td>19.05 ± 0.23</td>
<td>80.06 ± 2.67</td>
<td>25.36 ± 0.64</td>
</tr>
<tr>
<td>5.5</td>
<td>99.47 ± 2.50</td>
<td>21.78 ± 0.25</td>
<td>77.68 ± 2.51</td>
<td>27.40 ± 0.70</td>
</tr>
<tr>
<td>6.5</td>
<td>97.17 ± 2.16</td>
<td>21.97 ± 0.23</td>
<td>75.20 ± 2.18</td>
<td>26.55 ± 0.67</td>
</tr>
<tr>
<td>7.5</td>
<td>83.06 ± 2.10</td>
<td>17.61 ± 0.23</td>
<td>65.45 ± 2.12</td>
<td>29.53 ± 0.75</td>
</tr>
<tr>
<td>8.5</td>
<td>76.28 ± 1.93</td>
<td>18.18 ± 0.22</td>
<td>58.10 ± 1.95</td>
<td>37.78 ± 0.93</td>
</tr>
<tr>
<td>9.5</td>
<td>72.25 ± 1.97</td>
<td>17.77 ± 0.22</td>
<td>54.48 ± 1.98</td>
<td>42.73 ± 1.04</td>
</tr>
<tr>
<td>10.5</td>
<td>66.90 ± 2.03</td>
<td>17.03 ± 0.22</td>
<td>49.87 ± 2.04</td>
<td>45.63 ± 1.11</td>
</tr>
<tr>
<td>11.5</td>
<td>65.30 ± 1.91</td>
<td>17.18 ± 0.21</td>
<td>48.12 ± 1.92</td>
<td>44.91 ± 1.09</td>
</tr>
<tr>
<td>12.5</td>
<td>65.68 ± 2.01</td>
<td>16.48 ± 0.22</td>
<td>49.20 ± 2.03</td>
<td>37.94 ± 0.93</td>
</tr>
<tr>
<td>13.5</td>
<td>55.60 ± 2.02</td>
<td>20.13 ± 0.42</td>
<td>35.47 ± 2.06</td>
<td>29.69 ± 0.82</td>
</tr>
<tr>
<td>14.5</td>
<td>49.23 ± 1.54</td>
<td>16.04 ± 0.19</td>
<td>33.20 ± 1.55</td>
<td>17.67 ± 0.46</td>
</tr>
<tr>
<td>15.5</td>
<td>48.99 ± 1.65</td>
<td>19.70 ± 0.22</td>
<td>29.28 ± 1.66</td>
<td>12.71 ± 0.36</td>
</tr>
<tr>
<td>16.5</td>
<td>41.71 ± 1.13</td>
<td>19.10 ± 0.21</td>
<td>22.61 ± 1.15</td>
<td>10.13 ± 0.27</td>
</tr>
<tr>
<td>17.5</td>
<td>39.20 ± 1.33</td>
<td>19.75 ± 0.28</td>
<td>19.45 ± 1.36</td>
<td>8.89 ± 0.31</td>
</tr>
<tr>
<td>18.5</td>
<td>39.27 ± 1.73</td>
<td>17.18 ± 0.24</td>
<td>22.09 ± 1.75</td>
<td>6.58 ± 0.24</td>
</tr>
<tr>
<td>19.5</td>
<td>35.32 ± 1.57</td>
<td>17.17 ± 0.33</td>
<td>18.15 ± 1.60</td>
<td>5.98 ± 0.32</td>
</tr>
<tr>
<td>20.5</td>
<td>36.13 ± 1.53</td>
<td>19.65 ± 0.32</td>
<td>16.48 ± 1.57</td>
<td>6.39 ± 0.32</td>
</tr>
<tr>
<td>21.5</td>
<td>35.16 ± 0.95</td>
<td>18.04 ± 0.18</td>
<td>17.13 ± 0.97</td>
<td>6.45 ± 0.19</td>
</tr>
<tr>
<td>22.5</td>
<td>31.08 ± 1.33</td>
<td>20.03 ± 0.30</td>
<td>11.05 ± 1.37</td>
<td>4.16 ± 0.23</td>
</tr>
<tr>
<td>23.5</td>
<td>29.00 ± 1.27</td>
<td>18.78 ± 0.28</td>
<td>10.22 ± 1.30</td>
<td>3.29 ± 0.21</td>
</tr>
<tr>
<td>24.5</td>
<td>28.83 ± 1.32</td>
<td>18.48 ± 0.32</td>
<td>10.35 ± 1.35</td>
<td>3.26 ± 0.24</td>
</tr>
<tr>
<td>25.5</td>
<td>28.18 ± 1.43</td>
<td>19.40 ± 0.33</td>
<td>8.78 ± 1.47</td>
<td>3.06 ± 0.24</td>
</tr>
<tr>
<td>26.5</td>
<td>22.58 ± 0.93</td>
<td>16.92 ± 0.20</td>
<td>5.67 ± 0.95</td>
<td>1.98 ± 0.11</td>
</tr>
<tr>
<td>27.5</td>
<td>22.22 ± 0.83</td>
<td>15.77 ± 0.20</td>
<td>6.45 ± 0.85</td>
<td>1.96 ± 0.11</td>
</tr>
<tr>
<td>28.5</td>
<td>24.57 ± 1.05</td>
<td>20.98 ± 0.23</td>
<td>3.58 ± 1.08</td>
<td>2.14 ± 0.16</td>
</tr>
<tr>
<td>29.5</td>
<td>26.08 ± 1.15</td>
<td>20.85 ± 0.23</td>
<td>5.23 ± 1.17</td>
<td>2.48 ± 0.20</td>
</tr>
<tr>
<td>30.5</td>
<td>21.84 ± 1.21</td>
<td>21.60 ± 0.30</td>
<td>0.24 ± 1.25</td>
<td>1.83 ± 0.18</td>
</tr>
<tr>
<td>34.5</td>
<td>20.88 ± 1.13</td>
<td>21.23 ± 0.28</td>
<td>−0.35 ± 1.16</td>
<td>0.94 ± 0.14</td>
</tr>
</tbody>
</table>
Modern Reservoir Age Estimation

Compared to the average modern 14C marine reservoir age ($R(t)) = 405 \pm 22 \text{ }^{14}$C yr), the Mediterranean Sea 14C reservoir age displays higher $R(t)$ values, with a deviance from the global mean sea surface reservoir age (ΔR) of 58 \pm 85 yr. Its western part presents a ΔR of 40 \pm 15 yr (Siani et al. 2000; Reimer and McCormac 2002). For the central part of the Gulf of Lion, Siani et al. (2000) found a higher ΔR estimated at 245 \pm 30 yr ($R(t) = 618 \pm 30 \text{ }^{14}$C yr), which is the average of 3 samples collected at Sète and Banyuls and recalculated by using the calibration model of Hughen et al. (2004). This offset from the Marine04 model has been explained as a result of biological processes or hardwater effects due to the discharge of coastal rivers after dissolution of limestone via several brackish lagoons, before reaching this part of the Mediterranean Sea.

Table 2 14C data for mollusk shells from cores POR 15 (1 sample) and PB06. 14C ages are calibrated in the last 2 columns using the Marine04 calibration curve with different values of the reservoir age ΔR. Age models 1 and 2 correspond to Figure 4b and 4c, respectively. Age model 1 uses a constant ΔR of 605 \pm 30 yr, while Age model 2 dates are calibrated with a ΔR of 605 \pm 30 yr for the upper 5 samples and with ΔR of 245 \pm 30 yr (see text for details).
Here, we estimate the modern 14C reservoir age in Pierre Blanche Lagoon by comparing 14C values with both historical events and 210Pb and 137Cs chronologies. Sabatier et al. (2008) recognized, in several cores, 3 main storm events related to events recorded in historical accounts in AD 1742, 1848, and 1893. In core PRO15, collected <100 m away from core PB06, 1 shell (SacA 6270) was recovered at 62 cm depth, just above the AD 1848 event. This shell dated to 1095 ± 30 14C yr (Table 3). On the other hand, the youngest age on PB06 at 20.5 cm depth is 1055 ± 30 14C yr. This age corresponds to a date of AD 1930 ± 5 yr, derived from the 210Pb CFCS model ages and the 137Cs chronology (average sedimentation rate of 2.65 ± 0.2 mm/yr).

Sea surface reservoir 14C ages $R(t)$ for the first modern shell (SacA 6270) on core PRO15 were calculated by subtracting the atmospheric 14C value estimated for the historical date AD 1848 (113 ± 9 14C yr, Reimer et al. 2004) from the measured apparent 14C ages of the mollusks (1095 ± 30 14C yr, Table 3, Figure 3). This gives a $R(t)$ value of 982 yr. The deviance from the global mean reservoir age (ΔR) is then obtained by subtracting the marine model age value estimated for AD 1848 (485 ± 24 14C yr, Hughen et al. 2004) from the measured apparent 14C age of the shell (1095 ± 30 14C yr, Table 3, Figure 3). The ΔR value is thus estimated as 610 ± 40 yr (Figure 3). By adopting a similar approach for shell (SacA 6253) on core PB06 dated to AD 1930 by 210Pb and 137Cs chronologies (Table 3), we obtain $R(t) = 903$ 14C yr ($\Delta R = 600$ yr). These 2 dated shells suggest that in Pierre Blanche Lagoon, the average reservoir age $R(t)$ is $943 ± 25$ 14C yr ($\Delta R = 605 ± 30$ yr). This high $R(t)$ value compared to the Mediterranean Sea in the studied area ($R(t) = 618 ± 30$ 14C yr, Siani et al. 2000) can be explained either by variable discharge of coastal rivers, after draining a watershed mostly composed of limestone, and/or by the non-permanent marine influence in relation to the lagoonal system.

Table 3 14C dates of modern pre-bomb shell samples in PBL and their reservoir ages.

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Sample</th>
<th>Age of shells (yr AD)</th>
<th>14C age (BP)</th>
<th>Tree-ring 14C age (BP)</th>
<th>Reservoir age ($R(t)$ yr)</th>
<th>Model age</th>
<th>ΔR (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SacA 6270</td>
<td>PRO15-60</td>
<td>1848</td>
<td>1095 ± 30</td>
<td>113 ± 9</td>
<td>982</td>
<td>485 ± 24</td>
<td>610</td>
</tr>
<tr>
<td>SacA 6253</td>
<td>PB06-20</td>
<td>1930</td>
<td>1055 ± 30</td>
<td>152 ± 7</td>
<td>903</td>
<td>454 ± 23</td>
<td>601</td>
</tr>
</tbody>
</table>

Reservoir Age Correction During the Holocene

In order to apply an accurate ΔR correction for 14C dating of marine shells, it is necessary to estimate past $R(t)$ fluctuations (Goodfriend and Flessa 1997; Ingram and Southon 1997; Siani et al. 2001; Reimer and McCormac 2002; Southon et al. 2002; Fontugne et al. 2004). The same precaution has to be taken in coastal areas especially when high $R(t)$ variability may occur.

From a sedimentological point of view, core PB06 (Figure 4) displays a relatively homogenous lagoonal deposit characterized by gray clays and silts with some sand layers (corresponding to paleostorm events). However, the high-resolution stratigraphy of fauna indicates a clear shift in mollusk population between 190 and 170 cm (Sabatier et al. 2010) with an increase of lagoonal species (*Hydrobia acuta*), whereas the number of marine species (*Bittium recticulatum*) decreases (Figure 4a). These data suggest a variation in environmental conditions (salinity, temperature, nutrients, oxygen content). This change is interpreted as the result of the final closure of the coastal lagoon by a sandy barrier due to sediment transfer along the littoral. In this area, sandy barriers build up as a result of along-shore progradation of sand spits from inherited topographic highs, by east-west coastal drift carrying sand material from the Rhône River (Raynal et al. 2009). Therefore, the fauna content clearly shows a shift from a protected lagoon (with permanent inlet) to an isolated lagoon environment at around 170-cm core depth.
Correction of the reservoir age, as calculated above ($\Delta R = 605 \pm 30$ yr), was first applied to the whole 14C data set in core PB06 (Table 2), defined as Age model 1 (Figure 4b). The results indicated the persistence of significant 14C age inversions occurring between 130 and 200 cm along the core. By taking into account the mollusk fauna record, we can assume that apparent 14C age inversions could be related to a change in R(t) between the 2 lagoonal paleoenvironments (one open to the sea, the other closed). Therefore, we suggest correcting 14C ages using (1) $\Delta R = 245 \pm 30$ yr due to the local marine reservoir age during a protected lagoon environment (similar to the value of 618 yr found for the Gulf of Lion by Siani et al. [2000]), and (2) $\Delta R = 605 \pm 30$ yr when isolated lagoonal conditions prevailed. Therefore, Age model 2 (Figure 4c) was calculated using $\Delta R = 245 \pm 30$ yr for 173–758 cm depth and $\Delta R = 605 \pm 30$ yr for 0–139 cm depth. The very slight 14C inversion (Figure 4c) between 139 cm (i.e. 1036 ± 107 yr cal BP) and 173 cm (i.e. 948 ± 106 yr cal BP) is within the uncertainties.

The 14C chronology presented in Figure 4c between 250 and 300 cm displays the same 14C age (between 2500 and 2600 yr cal BP). This apparent strong increase of sedimentation rate around 270 cm is probably the result of a 14C age plateau. Indeed, between 2350 and 2700 yr cal BP the calibration curve presents a 14C age plateau caused by a strong increase of 14C production in the atmosphere at 2750 yr cal BP (Reimer et al. 2004), known as the “Hallstatt disaster.” Another age inversion occurred at around 550 cm, between 4875 and 5275 yr cal BP, and is probably also due to the increase of 14C production in the atmosphere around 5300 yr cal BP, likely a similar scenario previously observed during the “Hallstatt disaster.”
Figure 4 Age models for core PB06. Lithologic description and (a) faunal depth distribution of *Bittium recticulatum* (marine species) and *Hydrobia acuta* (lagoonal species); (b) Age model 1 obtained on lagoonal mollusk shells (Table 2) with a ΔR of 605 ± 30 yr; (c) Age model 2 calculated with a ΔR of 605 ± 30 yr for the isolated lagoonal environment (since about AD 950) and a ΔR of 245 ± 30 yr for the more open lagoonal environment (before AD 950). PLC paleoenvironmental evolution before and after the closure of the sandy barrier around 1000 yr cal BP.
In Pierre Blanche Lagoon, the final model (Age model 2) for PB06 core (Figure 4c) suggest a low sedimentation rate of 0.3 mm/yr at the base of the core. This rate increases from 1 mm/yr from 6385 to 948 14C yr to 1.5 mm/yr over the last millennium. For the modern part of the core, the accumulation rate is the same as that estimated at 2.65 mm/yr using the 210Pb and 137Cs chronologies.

R(t) Comparison with Other Mediterranean Lagoons

In the northern part of the Lagoon of Venice, Zoppi et al. (2001) estimated a high R(t) value of ~1200 yr by comparing benthic foraminifera and continental leaves at 1900 cal BP. This area seems to be more isolated from the sea than Pierre Blanche Lagoon, with a strong input of freshwater that explains the larger R(t) values. On the other hand, in the Thau Lagoon (Figure 1), 2 14C dates were obtained on continental seed (2935 ± 35 BP) found at an archaeological site and on a lagoonal shell (3535 ± 35 BP, Cerastoderma glaucum). Calculating the R(t) gives a value of about 600 ± 50 14C yr (M Court-Picon, unpublished data). Such an R(t) value is similar to that obtained by Siani et al. (2000) at Sète for the same species but for the modern period (AD 1907–1892: R(t) = 618 ± 30 14C yr). This value, smaller than the modern value in Pierre Blanche Lagoon, is probably due to a strong marine water input through the large permanent inlet. These R(t) discrepancies between different Mediterranean lagoonal environments seem to be in good agreement when the lagoons are isolated systems, resulting in an increase in R(t) when the lagoon environment is less open to the sea and more influenced by riverine inputs.

CONCLUSION

The modern 14C reservoir age in Pierre Blanche Lagoon was estimated by comparing 14C ages of 2 mollusk shells with the ages of sediment layers derived from historical storm events and from 210Pb and 137Cs chronologies. The high value found (943 ± 25 14C yr) compared to the average marine reservoir age results from a hardwater effect caused by the discharge of coastal rivers and/or by the relative isolation of the lagoon from the sea. This interpretation is in good agreement with data reporting high R(t) values for different Mediterranean lagoons in variable isolation states (Venice, Thau). Our data further suggest that R(t) has probably changed with time, with an increase of >350 yr between the mid and late Holocene. This change most likely results from the final closure of the coastal lagoon with the growth of the sandy barrier. The age model of core PB06 indicates a low sedimentation rate of 0.3 mm/yr between 7817 and 6385 14C yr, corresponding to the last stand of post-glacial sea-level rise. The sedimentation rate is then relatively constant at 1 mm/yr over a period of protected lagoonal environment (from 6385 to 948 14C yr), then increasing to 1.5 mm/yr during isolated lagoonal conditions (last millennium). This latter rate is in good agreement with the rate derived from 210Pb and 137Cs chronologies. This study confirms that a careful estimation of R(t) is necessary when accurate 14C ages are to be derived in high-resolution studies of coastal areas. This would avoid misinterpretation of archaeological or paleoenvironmental data.

ACKNOWLEDGMENTS

This research has been undertaken in the framework of the ECLICA Project financed by INSU (ACIFNS “Aléas et Changement Globaux,” coordinator L Dezileau) and the AR MILIT project (ANR n° NT_NV_27/2005, P Blanchemanche). We thank the Laboratoire de Mesure 14C (LMC14) ARTEMIS in the CEA Institute at Saclay (French Atomic Energy Commission) for the 14C analyses (ECLICA and INTEMPERIES projects, coordinator Dezileau). I Bentaleb thanks the members of the “Paleocean” team, especially Fabien Dewilde, Elsa Cortijo, and Elisabeth Michel for offering their facilities during the academic sabbatical she spent at the CNRS-LSCE. Michel Fontugne (LSCE) and members of the GLADYS platform (www.gladys-littoral.org) and of the ECLICA Project.
Project are also thanked for their constructive discussions during the course of this study. We are also grateful to J Faïn (Université Blaise Pascal, Clermont-Ferrand) for allowing us to use his program for self-attenuation corrections in γ-ray spectrometry. This article benefited through constructive reviews by Paula Reimer.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

