Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin

A. Gay a,*, M. Lopez b, P. Cochonat c, D. Levaché d, G. Sermondadaz d, M. Seranne b

a Challenger Division for Seafloor Processes, National Oceanography Centre of Southampton, Southampton, UK
b Laboratoire Dynamique de la Lithosphère, Université Montpellier 2, Montpellier, France
c Laboratoire Environnements Sédimentaires, Département Géosciences Marines, IFREMER, Brest, France
d TOTAL Pau, France

Received 8 October 2004; received in revised form 16 February 2006; accepted 17 February 2006

Abstract

Using high quality 3D seismic data within the Lower Congo Basin (LCB), we have identified pockmarks that are aligned above the sinuous belt of a buried turbiditic palaeo-channel, 1000 m beneath the seafloor. Geochemical analyses on cores (GC traces), taken in the centre of four of these pockmarks along this channel, show no clear evidence for migrated oil. But, some features of the GC traces, including elevated baselines (UCM O34 mg/g) and a broad molecular weight range of n-alkanes with little odd–even preference, may be interpreted as indicating the presence of thermogenic hydrocarbons in the cores.

Seismic profiles show that these pockmarks developed above two main features representative of pore fluid escape during early compaction: (1) closely spaced normal faults affecting the upper 0–800 ms TWT of the sedimentary column. This highly faulted interval (HFI) appears as a hexagonal network in plane view, which is characteristic of a volumetrical contraction of sediments in response to pore fluid escape. (2) Buried palaeo-pockmarks and their underlying chimneys seem to be rooted at the channel–levee interface. The chimneys developed during early stages of burial and are now connected to the HFI.

This study shows that the buried turbiditic channel now concentrates thermogenic fluids that can migrate through early chimneys and polygonal faults to reach the seafloor within some pockmarks. Using a multidisciplinary approach within the Lower Congo Basin, combining 3D seismic data and geochemical analyses on cores, we trace the fluid history from early compaction expelling pore fluids to later migration of thermogenic hydrocarbons.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Pockmarks; Turbiditic channels; Fluid migration; Polygonal faults; Seismic chimneys; Pipes

1. Introduction

Gases of thermal origin in near-surface sediments are believed to have been generated at greater depth and migrated to the surface (Leythaueser et al., 1982, 2000). Detection of near-surface thermal hydrocarbons could obviously be of economic importance because it offers the possibility of direct geochemical hydrocarbon prospecting and exploration (Wenger and Isaksen, 2002; Abrams, 1992; Horvitz and Ma, 1988; Faber and Stahl, 1984; Horvitz, 1972, 1978). The origin of hydrocarbons in shallow sediments and the applicability of geochemical surface data in petroleum prospecting is still controversial due to difficulties in data interpretation and in the principal understanding of the effects of biodegradation and vertical migration of hydrocarbons from deep source rocks to the surface (Faber et al., 1998; Hunt, 1990; Fuex, 1977).

Due to the low matrix permeability of argillaceous mudstone, fluid flow through the sedimentary column is quite slow and diffusive but it is compensated for by long Ma timescale. However, active gas venting is clearly controlled by subsurface structures such as faults and faulted anticlines (Eichhubl et al., 2000). Evidence of focused fluid flow through the sedimentary column is seen (1) on the surface by pockmarks that are consistently located above faults of a polygonal fault interval (Gay et al., 2004) and (2) in the
sedimentary column by seismic chimneys that are indicative of deeper reservoirs (Gay et al., 2003; Heggland, 1998). Seeps associated with diapiric features in offshore West Africa are often abundant and are often very large (visibly oil-stained sediments, very high petroleum concentrations), actively migrating, associated with high concentrations of gas with a thermogenic component and sometimes supporting oil slicks on the sea surface (Wenger and Isaksen, 2002). Even when seeps are authenticated, their presence does not prove economic hydrocarbon accumulations at depth, seal failure or gas displacement from reservoirs (Wenger and Isaksen, 2002). In the Lower Congo Basin (LCB), we have identified pockmarks related to a deep buried turbiditic channel (i.e. upper Miocene). Using a multidisciplinary approach, combining 3D seismic data and geochemical analyses on shallow sediments (Fig. 1), we trace the fluid history from early compaction expelling pore fluids to later migration of deep thermogenic hydrocarbons from the upper Miocene turbiditic channel. Although our examples are specific to the LCB, it is hoped that the dynamical model proposed may find applicability in other basins characterized by similar post-rift stratigraphy.

2. Data base, sample selection and analyses

This study was primarily based on 3D seismic datasets from the Lower Congo Basin (LCB) acquired by the TOTAL oil company (Fig. 1). The selected 3D-dataset covers an area of 4150 km² with a line spacing of 12.5 m, a CDP distance of 12.5 m and a vertical resolution of 4 ms. The data were loaded on a workstation and interpreted using the SISMAGE software developed by TOTAL. The bathymetric and reflectivity maps were acquired with a Simrad EM12 dual multibeam. Complementary data collected more recently with the Simrad EM300 dual multibeam provide higher vertical and lateral resolution for acquisition in water depth less than 3500 m. Data from the ODP Leg 175 on the West African margin (see Fig. 1 for location) have constrained the stratigraphic record, sedimentation rates and mechanical properties of Pliocene to Recent sediments (Wefer et al., 1998a).

Core locations were chosen on the basis of strong evidence of gas on seismic profiles (seismic chimney above a bottom simulating reflector (BSR) and a free gas zone) and indications of actual seepage processes (i.e. pockmark) on the seafloor identified on 3D seismic data and on reflectivity maps (cores

![Fig. 1. Bathymetric map of the Congo–Angola Basin issued from the EM-12 multibeam bathymetry acquired during the ZAIANGO project (1998–2000). The study area (grey-shaded rectangle) is located on the north flank of the present day Zaire channel between 1000 and 1800 m water depth. The three sites of the Leg ODP 175 in this zone are reported.](image-url)
Ca, Cb, Cc and Cd on Fig. 3) between 1300 and 1700 m water depth. Headspace gas concentrations (C1–C7) were measured on all sections of cores with a GC–FID chromatography system. The gases were resolved into separate peaks, which are quantified in parts per million compared to a previously calibrated standard. The samples were oven dried (40°C) and soxhlet extracted with n-hexane. The total extract was reduced in volume. An aliquot of each sample was then scanned by fluorometer to determine the maximum emission intensity with a Perkin–Elmer LS50B Fluorometer. For the GC15C and GC–MS analysis, hydrocarbon fractions were injected onto a chromatography system. The mixture was resolved into separate peaks with an unresolved complex mixture (UCM); three internal standards (heptamethylnonane, chloro-octadecane and squalane) were added to calibrate the peaks and UCM response. Another aliquot was injected onto a capillary gas chromatograph (HP 6890 Series GC System) fitted with a flame ionisation detector through a split inlet with electronic pressure control.

Several methods can be used to determine the sources of gaseous and liquid hydrocarbon, such as the gas composition (ratio of C1/C2), the maximum intensity of TSF, GC and GC–MS (mass-spectrometry) analyses and the carbon isotopic ratio of C1 (Prinzhofer et al., 2000; Abrams, 1996; Kastner et al.,

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of geochemical analyses conducted on the cores (Ca, Cb, Cc and Cd) taken within four different pockmarks along the upper Miocene channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Imax TSF</th>
<th>δ13C (C1) (‰)</th>
<th>C1 (ppm)</th>
<th>C2 (ppm)</th>
<th>C3 (ppm)</th>
<th>iC4 (ppm)</th>
<th>nC4 (ppm)</th>
<th>Total C5–C7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>1.2–1.4</td>
<td>902</td>
<td>–</td>
<td>77,330</td>
<td>316</td>
<td>146</td>
<td>39</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td>1.8–2.0</td>
<td>5110</td>
<td>–</td>
<td>73,264</td>
<td>282</td>
<td>83</td>
<td>21</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>2.6–2.8</td>
<td>563</td>
<td>–</td>
<td>62,128</td>
<td>187</td>
<td>80</td>
<td>28</td>
<td>682</td>
</tr>
<tr>
<td>Cb</td>
<td>1.2–1.4</td>
<td>638</td>
<td>–</td>
<td>512</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>1.8–2.0</td>
<td>4095</td>
<td>–</td>
<td>1</td>
<td>23</td>
<td>64</td>
<td>15</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>2.6–2.8</td>
<td>2001</td>
<td>–</td>
<td>65,443</td>
<td>286</td>
<td>26</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Cc</td>
<td>2.2–2.4</td>
<td>1344</td>
<td>–</td>
<td>36</td>
<td>8</td>
<td>39</td>
<td>24</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>3.2–3.4</td>
<td>698</td>
<td>–</td>
<td>29</td>
<td>8</td>
<td>46</td>
<td>21</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>4.4–4.6</td>
<td>21,155</td>
<td>–</td>
<td>34</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Cd</td>
<td>1.8–2.0</td>
<td>2118</td>
<td>–</td>
<td>23</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.8–3.0</td>
<td>1306</td>
<td>–</td>
<td>125</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4.0–4.2</td>
<td>6332</td>
<td>–</td>
<td>54</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Three samples (depth in metres below seafloor) have been analysed for each core, showing strong concentrations of C1 (methane) within sediments of the cores Ca and Cb. Extract yields and fluorescence intensities are relatively high (4000 < Imax TSF < 21,000) compared to other cores from the Congo–Angola Basins (<1000; TOTAL, personal communication), which could be interpreted as indicating the presence of thermogenic hydrocarbons in the core. The isotopic analyses show a value of δ13C = –70‰ for Ca and –86‰ for Cb (relative to PDB).

Fig. 2. Line drawing of the seismic profile AB. The post-rift stratigraphy is characterized by two superposed seismic architectures: (1) an Albian to Eocene sequence containing the source rocks and (2) an Oligocene to Present sequence containing the reservoirs (turbiditic channels) and the sedimentary cover (affected by polygonal faulting). Deep thermogenic fluids migrating from the source rocks are preferentially trapped into the silty–sandy channels, playing the role of reservoirs (Burwood, 1999).
1995; Saunders et al., 1993; Brooks et al., 1983; Reitsema, 1978). Results are reported in Table 1.

3. Geological settings

The Lower Congo Basin is one of the numerous sub-basins that developed during the opening of the West African passive margin in the early Cretaceous (130 Ma) (Marton et al., 2000; Jansen et al., 1984a,b). Following the deposition of thick evaporites during mid-Aptian time (Karner et al., 1997), the margin developed in three phases between the late Cretaceous and the Present (Seranne et al., 1992) (Fig. 2):

(1) From late Cretaceous to early Oligocene. This period was characterized by low-amplitude/low-frequency sea-level changes and an even climate (greenhouse period) (Seranne, 1999). These eustatic and climatic conditions led to the deposition of an aggradational carbonate/siliciclastic ramp. This interval is characterized by marine source rocks producing thermogenic oils and gases (Burwood, 1999) (Fig. 2).

(2) From early Oligocene to Pliocene. The major change in oceanic circulation has led to the formation of an ice cap. The environmental conditions were characterized by high-amplitude/high-frequency eustatic variations and an alternating drier and wetter climate (ice-house period) (Seranne, 1999). The sedimentation was dominated by the progradation of a terrigenous wedge that has led to the formation of the large turbiditic fan off Congo and Angola slope (Droz et al., 1996; Uchupi, 1992; Brice et al., 1982).

Fig. 3. Up: dip map of seafloor within the Lower Congo Basin, calculated from the 3D seismic datasets. This map shows fluid seeps evidence such as pockmarks associated with faults or salt diapirs. Four cores (Ca, Ch, Ce and Cd) have been taken within four different isolated pockmarks aligned along a band, 5–10 km wide, oriented E–W. Down: reflectivity map acquired by IFREMER with a EM12 multibeam. Small dark patches represent pockmarks on the seafloor.
This fan is mainly composed of turbiditic palaeo-channels (Oligo–Miocene interval). Thermogenic fluids migrating upward are preferentially trapped into these silty–sandy channels, playing the role of reservoirs (Burwood, 1999) (Fig. 2). Further south, turbidite sands are commonly associated with three major depositional sequences in the Block 4 within the Angola basin (Anderson et al., 2000): the 17.5–15.5 Ma sequence (Burdigalian, early Miocene), the 8.2–6.3 Ma sequence (Tortonian, late Miocene), and the 6.3–5.5 Ma sequence (Messinian, late Miocene).

From early Pliocene to Present. The shelf and the slope are deeply incised by a canyon that directly connects the Congo River with the basin floor. Analyses conducted during ODP Leg 175 have shown that turbidity currents played a minimal role in transporting sediment within this part of the Lower Congo Basin (Pufahl et al., 1998; Giraudeau et al., 1998). Coarse sediments trapped into the canyon were carried far onto the lower fan (Savoye et al., 2000; Uenzelmann-Neben, 1998; Jansen et al., 1984a,b) while only muddy sediments are deposited on the slope (Cooper, 1999; Wefer et al., 1998b) and mixed with hemipelagic sediments. The Pliocene–Present interval is considered as a good seal above the Oligocene–Miocene turbiditic interval (Fig. 2) (Burwood, 1999).

One of the main tectonic features of the West African margin is the gravitational sliding of post-rift sediments above a décollement layer made up of Aptian evaporites (Liro and Cohen, 1995; Duval et al., 1992; Lundin, 1992). In the Lower Congo Basin, gravitational processes created two structural domains each about 100 km wide: an extensional domain on the upper slope and a compressive domain located down slope (Fig. 2). The extensional domain is locally associated with large amounts of extension across listric faults creating individual rafts and grabens (Rouby et al., 2002; Duval et al., 1992; Burollet, 1975).

4. Organisation of seafloor pockmarks

In the southern part of the study area, the seafloor is characterized by small circular pockmarks, ranging from 100 to 300 m in diameter, and from a few meters to a maximum of 20 m in depth (Fig. 3). These pockmarks appear as small patches on the reflectivity map. These could be due to the presence of carbonate concretions and chemosynthetic communities within the depression (Gay et al., 2006). Although pockmarks seem unorganised, they are aligned along a band, 5–10 km wide, oriented E–W (Fig. 3). The seismic profile CD across a pockmark (core Ca location) displays two
superimposed acoustic anomalies, vertically elongated under the pockmark (Fig. 4). The shallowest anomaly is ovoid in shape with depressed high-amplitude reflectors interpreted as a reduction in seismic velocities (pull-down effects) through a gas-charged column. Such acoustic anomalies are also called seismic chimneys, and could be indicative of fluid flow from deeper levels (Tingdahl et al., 2001; Hempel et al., 1994) and of deeper reservoirs (Heggland, 1998). The deepest anomaly characterized by acoustic turbidity corresponds to an inverted cone shape, marked by a fadeout of the reflectors. On both sides of this region, the bright reflectors shift upward. Profile CD (Fig. 4) shows a high-amplitude reflection parallel to the seafloor located at 250 ms TWT. This is a bottom simulating reflector (BSR), which is often considered as the lower thermodynamic limit of the gas hydrate stability zone (Shipley et al., 1979). BSR’s are characterized by reversed polarity compared to the seafloor reflection, indicating a downward reduction of seismic impedance and therefore of seismic velocity. This contrast in impedance is probably due to the presence of free gas trapped below the gas hydrate stability zone, and the BSR can be considered as the interface between high-velocity gas hydrates and the underlying gas-charged sediments of low acoustic velocity. On this profile, the BSR is deflected upward directly beneath the pockmark depressions, suggesting a localized positive heat flow anomaly. This dome-shaped anomaly could be due to an ascending movement of fluids through the sedimentary column (De Batist et al., 2002). The seismic chimney seems to take root on the top of an upper Miocene turbiditic palaeo-channel. This channel appears on the seismic as high-amplitude packages with strongly scoured/erosional bases indicating deposition in a largely channelized environment.

5. Cartography of the upper Miocene turbiditic channel

Due to the discontinuous character of turbiditic channels and infills, automatic picking of sand bodies is difficult within these intervals. Based on the amplitude of reflectors and their continuity, the SISMAGE software developed by TOTAL allows the calculation of the ‘Chaoism’ amplitude from a 3D seismic block, using a running window semblance-based algorithm. ‘Chaoism’ sliced in time or draped on a surface
helps define faults and stratigraphy by looking for discontinuities or boundaries surrounding areas of interest. This attribute highlights high chaotic sedimentary bodies (channel deposits, abandoned channel infill) in black and low chaotic deposits (channel levees, surrounding hemipelagic sediments) in white. In the new 3D-Chaotism block, the upper Miocene turbiditic channels exhibit a variety of forms including high sinuosity channels with well-developed levee systems or relatively straight features in map view (Fig. 5). Depositional processes are believed to have been responsible for the dominantly linear shape and channelized cross-sectional geometry of reservoirs. The dominant orientation of turbiditic channels corresponds to the direction of the sediment supply issued from the Zaire River mouth and is related to the progradation of the Zaire fan pro-delta across the study area.

Fig. 5 shows aligned pockmarks that are consistently located above the upper Miocene turbiditic channel. This observation suggests that fluids are originating from the underlying channel to rise through seismic chimneys. However, the Pliocene–Present interval is considered to act as a seal, mainly because of its fine-grained content. This interval is affected by a large number of polygonal faults, which act as migration conduits for driving up fluids entrapped within underlying sandy reservoirs (Gay et al., 2004; Lonergan et al., 2000). We consider that the polygonal fault interval may compromise the seal capacity of the Pliocene–Present sedimentary cover.

6. Role of polygonal faults

The representative seismic section EF (Fig. 6) shows the seismic expression of a polygonal fault interval in the first 0–800 ms TWT below seafloor. It is characterized by numerous closely spaced normal faults, which have small offsets (5–30 m) and an average spacing of 100–500 m (Gay et al., 2004). A dip map of a horizon located in the northern part of the study area discloses a dense fault network with polygonal pattern in plane view (Fig. 6). The polygons size ranges from 1 to 3 km and they share their edges with the adjacent polygons. Since the first recognition of a polygonal fault system in the Leper Clay of Belgium (Henriet et al., 1991), numerous examples of layer-bound polygonal fault systems have been described worldwide from 3D seismic data (Cartwright and Dewhurst, 1998; Lonergan et al., 1998; Cartwright and Lonergan, 1997; Oldham and Gibbins, 1995; Cartwright, 1994; Pong and Watts, 1987; Klitgord and Grow, 1980). It thus appears that lithology plays a key role in the development and in the inhomogeneous frequency of faults (Dewhurst et al., 1999a,b). Faulted intervals are now interpreted as a layer-parallel volumetric contraction of fine-grained sediments leading to pore fluids escape (Cartwright and Lonergan, 1996). It thus appears that polygonal faulting starts at the water-sediment interface, suggesting that expulsion of fluids is initiated as the sediments are still unconsolidated (Gay et al., 2004).

7. Early formation of conduits

The seismic profile GH (Fig. 7) across a pockmark (core Cb location) shows two seismic chimneys branching on both sides of an upper Miocene channel (see Fig. 3 for location). Their bases are located at the channel–levee interface, where they seem to take root because of the lack of any deeper seismic anomaly. At about 250 m above the turbiditic channel, the seismic chimneys end abruptly at the same time: they are covered by circular depressions corresponding to palaeo-pockmarks, now sealed by muddy Mid-Pliocene to Present sediments. As previously described for the Pleistocene shallow buried channel on the right flank of the Zaire Canyon, the sediment overburden may stop the fluid escape and seal the pockmarks if it exceeds 240 m (Gay et al., 2003). This could indicate the syn-sedimentary escape of pore-fluids during the deposition of sediments over the upper Miocene channel. The development of a pockmark on the seafloor clearly indicates that fluid escape continued after sealing of palaeo-pockmarks and fluids have migrated mainly through the polygonal fault interval.
Fig. 8. Diagram representing the chromatograms of the GC–MS realized on the four cores. These geochemical analyses show relatively elevated baselines (UCM > 20 µg/g) and a broad molecular weight range of \(n \)-alkanes. However, the evidence for an oil charge in shallow sediments (0–5 m) remains fairly tenuous if based only on a random geochemical sampling.
8. Geochemical analyses on cores within isolated pockmarks

In addition to possible biodegradation in the reservoir, hydrocarbons are known to be oxidized by bacteria in the first 10 m below seafloor, in the aerobic zone and in the sulphate-reducing interval (Wenger and Isaksen, 2002; Devol and Ahmed, 1981; Bernard et al., 1978; Claypool and Kaplan, 1974). It is thus important to understand the processes controlling the distribution of migrated and in situ hydrocarbons in surficial sediments to detect anomalous migrated hydrocarbons. A number of geochemical signatures can be expected including that of a biogenic gas (including background gas), a migrated thermogenic gas or a mixed biogenic–thermogenic.

More than 150 gravity cores were collected on the whole Congo–Angola Basin by TOTAL. Four of these cores (Ca,Cb,Cc, and Cd) were taken within pockmarks in the study area. They are located above the upper Miocene channel at different positions along the channel axis (Fig. 8). These cores were chosen on the basis of actual/recent fluid seepage evidence (underlying seismic chimney, hydrogen sulphide odor when opening cores, carbonate concretions within the core).

Core Ca is characterized by a medium grey clay containing carbonate concretions. The number of concretions increases with depth. The core exhibited a strong sulphide odor when opened. The sediments within core Cb are reddish brown very soft clays overlying dark greenish grey clays with numerous cemented sediment nodules up to 3 cm across. The sediments exhibit a strong hydrogen sulphide odor. Core Cc is composed of very soft dark greenish grey pure clays with occasional sand sized particles in the upper sections of the core. Core Cd corresponds to reddish brown very soft clays overlying very soft clays with occasional sand sized particles.

Geochemical analyses conducted on these cores (Table 1) show that extract yields and fluorescence intensities are relatively high (4000 < Imax TSF < 21,000) compared to other cores from the Congo–Angola Basins (<1000; TOTAL, personal communication). The GC traces showed no clear evidence for migrated oil but abundant evidence for recent organic material, which tend to mask evidence of thermogenic migrated hydrocarbons on chromatograms (Fig. 8). But, some features of the GC traces, including elevated baselines (UCM > 20 µg/g) and a broad molecular weight range of n-alkanes with little odd–even preference (Fig. 8), could be interpreted as indicating the presence of thermogenic hydrocarbons in the core.

Headspace analysis of C1–C7 (Table 1) show that the cores Ca and Cb have high methane (C1) content and their isotopic analyses show a value of δ13C = −70‰ for Ca and −86‰ for Cb (relative to PDB). Abundance ratios, heavier than −20 to −50‰ are believed to be of thermal origin and ratios lower than −70‰ are considered to be biogenic in origin (Brooks et al., 1984; Tissot and Welte, 1984). The isotopic values of cores Ca and Cb should therefore be interpreted as biogenic gases. In order to complete geochemical interpretation of the hydrocarbons (liquid fraction), extracts were selected for GC–MS analysis. They contained clearly recognizable oil fingerprints. These have been interpreted as most likely derived from a marine Tertiary siliciclastic source rock with land plant input (TOTAL, personal communication). The molecular ratios of aromatic compounds analysed by GC–MS are consistent with a mature source rock. The use of a complete geochemical analysis thus shows that fluids reaching the seabed can be interpreted as a mix of biogenic and thermogenic gases.

9. Discussion

In the area of isolated pockmarks, there is a close relationship between pockmarks, underlying chimneys, upward deflection of the BSR (if present) and an upper Miocene turbiditic channel. In the Lower Congo Basin, turbidite sands are associated with three main stages of deposition (Anderson et al., 2000): Burdigalian (17.5–15.5 Ma), Tortonian (8.2–6.3 Ma) and Messinian (6.3–5.5 Ma). The stacking patterns of the upper Miocene channels comprise fine to medium grained massive sands overlain by a fining upwards package interpreted as a channel abandonment facies or as overbanks to an adjacent channel (Anderson et al., 2000). The massive sands often form the basal units of sequences that grade upwards into a succession of horizontally laminated fine sands and silts, overlain by wavy, lenticular bedded silts and interbedded muds. Due to the high porosity of silts and sands within the channel infill, the upper Miocene channel may concentrate thermogenic fluids migrating from underlying source rocks. Syn-depositional major faults located above turbiditic sand bodies may periodically act as main vertical fluid escape pathways (Lonergan et al., 2000). However, the main problem is the ability of fluids to migrate through the impermeable Pliocene–Present cover. Detailed observation of seismic profile GH (Fig. 7) has shown that fluids may migrate through a polygonal fault interval that developed during early stages of compaction (Gay et al., 2004). A study of the organisation of faults shows that the pockmarks are consistently located at the intersection of three neighbouring hexagons (Gay et al., 2004). The triple-junction of three neighbouring hexagonal cells represents a preferential pathway for upward fluid migration from deeper levels. Consequently, the polygonal fault interval represents an interval with a high drainage potential for pore fluids. In this context, the fluids migrating from deeper levels are preferentially driven through this interval along the pre-existing faults, which affect all of the polygonal fault interval. Faults are commonly considered conduits through which hydrocarbons migrate vertically from the source rock into shallower reservoirs. Faults may act either as permeable conduits for the vertical channelized flow of hydrocarbons (Hooper et al., 2002) or, over time, juxtapose permeable beds allowing hydrocarbons to spill across sand-on-sand contacts (Allan, 1989). Geochemical analyses conducted on cores Ca and Cb within shallow sediments of pockmarks over the upper Miocene channel show strong evidence of a mix of biogenic methane and thermogenic fluids (methane and heavier hydrocarbons). The presence of thermogenic fluids
within shallow sediments of cores Ca and Cb represents evidence of thermogenic fluid migration from the reservoir (i.e. the upper Miocene channel) up to the seafloor through the polygonal fault interval.

A dynamic model is proposed for the LCB, which takes into account both kinds of sedimentation, turbiditic sedimentation building channel–levee systems on the slope and hemipelagic sedimentation, which tends to seal the first one (Fig. 9):

(1) *During the late Miocene*. Turbiditic channel–levee systems developed on the slope. Possibly as a result of landward avulsion, another channel–levee system is building up on the slope and the turbiditic channel is now abandoned.

(2) *During the early Pliocene*. There was slope incision by the Zaire Canyon. Coarse sediments were carried far onto the basin, starving the shelf. Only fine material, not confined

Fig. 9. Dynamical model illustrating the four stages evolution of fluid migration during burial in the Lower Congo Basin. During early stages of compaction, pore fluids and biogenic fluids are expelled from (1) shallow buried channels (through chimneys) and (2) fine-grained sediments of the slope (through a polygonal fault interval). At deeper burial thermogenic fluids are preferentially entrapped within the turbiditic channel, which plays the role of a reservoir. Because of the presence of polygonal faults, these fluids can migrate upward to cross the hydrate zone and reach the seafloor.
into the canyon, was delivered to the Congo slope. This suspended terrigenous material was mixed with hemipelagic sediments to feed a thick progradational wedge that overlies abandoned turbiditic sandy-channels. As the sediment thickness over these buried palaeo-channels ranges between 130 and 240 m, pore fluids continued to escape and pockmarks develop on the seafloor.

(3) During the Mid-Pliocene. The sediment thickness over the channel reached 240 m or more. The fine-grained sedimentation on the slope provided an effective seal and the fluid migration stops.

(4) From the Mid-Pliocene to the Present. During the early compaction of overlying mud-dominated sediments, pore fluids were expelled and numerous hexagonal small-scale faults were initiated. The triple-junction of three neighbouring hexagonal cells represents a preferential pathway for fluid migration from deeper levels, in particular thermogenic gases or oils, leading to the formation of pockmarks on seafloor.

However, seismic profile CD (Fig. 4) shows that deep thermogenic fluids cannot use early chimneys if hydrates are present. In this case, fluids migrating from the upper Miocene channel can accumulate under the hydrate stability zone to form a thick layer of free gas. The main factor controlling fluid entrapment is the presence of impermeable layers of hydrates, 150–200 m thick below the seafloor, leading to the generation of excess pore fluid pressure in the underlying free gas accumulation. The free gas can escape up to the seafloor along faults of the polygonal fault interval. This system might follow the fault-valve behaviour developed by Sibson (1992) and fluids could escape periodically. Such cycling should be recorded within this kind of pockmarks (mineralogy and/or biology) and need further sampling and study.

10. Conclusion

This detailed study of pockmarks within the Lower Congo Basin shows that the fluid migration history is complex due to the inter-relation of tectonic features and sedimentary bodies. We have shown that seafloor pockmarks, which seem isolated are most often related to an underlying upper Miocene turbiditic channel. Geochemical analyses conducted on four cores taken within pockmarks have led to the conclusion that fluids that are expelled on the present day seafloor are a mix of biogenic and thermogenic fluids. This observation suggests that the present day seafloor are a mix of biogenic and thermogenic fluids starting at the water-sediment interface. The identification of seafloor pockmarks related to an underlying Miocene channel and associated with a mix of biogenic and thermogenic fluids shows that these shallow conduits can be re-used at deeper depth by thermogenic fluids thereby questioning the seal capacity of the mud-dominated sedimentary cover.

Evidence for a hydrocarbon generating system in a basin needs a comprehensive approach. Geochemical sampling locations should be selected at favourable sites for hydrocarbon migration based on geophysical data and a good understanding of local geology. The evidence for an oil charge in sediments of the Lower Congo Basin would be fairly tenuous if based on only geochemical analyses. If geophysical and geochemical evidence are taken together, confidence in the interpretation increases, and the evidence for widespread continuous hydrocarbon migration becomes more compelling.

This study illustrates the fact that the sedimentary fluid migration is a continuous process during the burial story of sediments, starting at the sediment-water interface (escape of pore fluids and/or biogenic fluids) and continuing during compaction and lithification (thermogenic fluids).

Acknowledgements

The authors would like to express their gratitude to TOTAL for their financial support, data and for supporting the publication of this work. We gratefully acknowledge the IFREMER team for the time and care it has taken in reviewing this paper.

References

